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Sumnary. Reaction of non-enolizable 2-n-butylthiosethylene cyclohexanones with nethoxy- 
(phenylthio)sethyllithius, followed by hydrolysis of the diastereomeric mixture of resulting 
alcohols, provides a new and efficient ring enlargement reaction for the synthesis of the 
previously unreported 3-formyl-2-cyclohepten-l-ones. 

Carbocyclic ring expansion reactions have attracted considerable attention among syn- 

thetic organic chemists’. However, and in spite of the large number of approaches appeared 

in the literature, versatile procedures towards the synthesis of medium-size rings are still 

needed, in particular those leading to rings with specific functionalityr. In this paper, we 

describe, in a two-step process, an efficient and new ring enlargement of gem-disubstituted 

cyclohexanones to the previously undescribed in the literature 3-formyl-2-cyclohepten-l- 

ones, via the corresponding 2-n-butylthiomethylene derivatives. 

In the course of our work directed to the total synthesis of (+)-muzigadiala, we ob- 

served the unexpected formation of keto aldehyde 3h in the Hgz* -assisted hydrolysis of ad- 

duct 2h, obtained by reaction of the corresponding decalone with methoxy(phenyl- 

thio)methyllithium 4. The reagent was initially developed by Trost and coworkers4 in a new 

ring expansion approach to a-methylene &lactones, and later applied to a variety of one- 

carbon homologation reactionss. The above result encouraged us to study the scope of ap- 

plication of this reaction in other cyclic ketones and we found that the ring expansion ef- 

ficiently proceeds with non-enolizable cyclohexanones and decalones activated in a position 

by the q-butylthiomethylene group. While the use of this moiety as protective group of 

cyclic ketones is well documented in the literature, to our knowledge, its application as a 

driving force in a ring expansion approach for the synthesis of medium-size rings is 

unprecedented. The process involves initial introduction of the n-butylthiomethylene group6 

followed by reaction with methoxy(phenylthio)methyllithium 4. The resulting diastereomeric 

mixture of alcohols 2 undergo the ring expansion when treated with HgClz and HCl at 80-9OQC, 

to yield keto aldehydes 3, as shown in Scheme 1. 

As a representative example compound 3g was prepared as follows. In a three-neck round- 

bottomed flask was placed, under A, 0.15 g (1.03 mmole) of methoxy(phenylthio)methane in 3 

ml of anh. THF. The solution was cooled to -35QC and then 1.23 ~1 of a 0.84M BuLi in hexane 
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(1.03 mmole) was slowly added and the mixture stirred for 1 h. After cooling to -789C a 

solution of 220 mg (0.83 mmole) of ketone lg6 in 1.5 ml of anh. THF was added dropwise. The 

reaction mixture was stirred for 2 h, quenched with NH4Cl sat. soln. and repeatedly ex- 

tracted with ether. Usual work-up furnished an oily residue which was chromatographed on 

silica gel eluting with hexane:ether (100:1.5) to yield 202 mg (58%) of the a-epimer 2g and 

132 mg (38%) of the R-epimer 2g7. Hydrolysis of the diastereomeric mixture of alcohols 2g 

(171,mg, 0.405 mmole) in 20 ml of CHSCN in the presence of 441 mg (1.623 mmole) of HgClz and 

6 ml of 1N HCl at 8OQC for 

on silica gel eluting with 

0 

7. h, afforded 57 ag (73%) of keto aldehyde 3g after purification 

hexane:ether (100:5)‘. 

SPh 

la-h 2a-h 

Scheme 1 

3a-h 

As shown in the Table, whereas the yields of the diastereomeric alcohols 2 are excel- 

lent in all cases, the ring expansion process to 3 occurs efficiently only with activated 

non-enolizable cyclohexanones or decalones. 6-Unsubstituted ketones such as cyclohexanone la 

(entry 1) and cycloheptanone If (entry 6) gave mixtures of compounds, whereas 6- 

monosubstituted ketones such as 6-methylcyclohexanone lb (entry 2) afforded the expected 

keto aldehyde 3b in a better but not synthetically useful yield. 5,5-Dimethylcyclopentanone 

le was also a poor substrate for the expansion but 6,6-dimethylcyclohexanone lc, 6-methyl-g- 

D-propylcyclohexanone Id and decalones lg and lh efficiently expanded to the corresponding 

keto aldehydes in fair to good yields (entries 3, 3, 7 and 8)*. It must be noted that the 

presence of the D-butylthiomethylene group in a-position to the carbonyl is essential for 

the expansion, since the corresponding adducts of cyclohexanone and 1-decalone with 4 did 

not undergo any rearrangement under our standard conditionsg. On the other hand, the same 

adduct was recovered unchanged when treated with 2 equivalents of s-butyllithium, in an 

analogous way to that described by Cohen 10 for the ring enlargement of non-activated ketones 

with l&(phenylthio)methyllithium. In this case, the higher stabilization of the anion by 

the phenylthio group in comparison with the nethoxy group may account for this result. 

In order to postulate a plausible mechanism for the expansion reaction, the dias- 

tereomeric mixture of alcohols 2g was subjected to selective hydrolysis conditions. Thus, 

treatment of 2g with HgClz/HCl/acetone for 2h at room temperature or HgClz/HgO/CH3CN:HRO 

(4:l) for 15h at 9OQC afforded, in either case, the intermediate ‘i-member ring D- 

butylthiomethylene ketone fig as a mixture of isomersll. Further hydrolysis of this ketone 

with concomitant dehydronethoxylation needed stronger conditions (HgClS/CH3CN/lN HCl for 2h 

at 80X), to yield the expected keto aldehyde 3g in 70-753 overall yield from 2g. These 

results point out to a mechanism wherein a presumably anchimeric assistance of the D-butyl- 

thiomethylene group could compensate the positive charge induced by the HgClR-promoted 

cleavage of the CIS bond. The resulting intermediate of carbocationic character night then 
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undergo ring expansion to the methoxy ketone 5g, as shown in Scheme 2. Therefore, the R- 

butylthiomethylene group appears to activate the cleavage of the C-SPh group, favoring con- 

sequently the occurrence of the ring expansion process. 

*Isolated yield unless stated otherwise. 
Wrude yield. The compound could not be purified due to partial de- 
composition to the rearrangement product, a-phenylthio aldehyderz. 

=Crude product partially contaminated with the rearrangement product, 
a-phenylthio aldehyde, as detected by rH NMR (6=9.56 ppm). 

dThe expected keto aldehyde 3f contained (ca. 30%) of the intermedia- 
te q ethoxy compound 51 (see below). 

59 
H9C 12 
+ 

H. Ii 
CHO 

H 

39 
Scheme 2 
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In summary ) the ring expansion approach described herein, although restricted to a,a'- 

dialkylsubstituted cyclohexanones, is an efficient, two-step method for the synthesis of the 

previously unreported 3-formyl-2-cyclohept-en-1-onesl3; a class of compounds which otherwise 

might not be easy to prepare. 
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